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Abstract

Applying the fast Fourier transform (FFT) for pricing derivatives is one of
the popular and important evaluation methodologies. A general, and highly
cited FFT-based approach proposed by Carr and Madan (1999) can efficiently
price vanilla options given that the characteristic function of the underlying
asset’s return is analytically known. However, their pricing results converge
slowly and even are negative for deep-out-of-the-money options. This thesis
proposes a novel approach to address these problems. My approach decom-
poses the option value into the proxy and residual terms: The proxy term
approximates the theoretical option value and can be analytically evaluated
without generating numerical error; that is why my approach can generate
less pricing error. The residual term numerically estimates the difference be-
tween the theoretical option value and the proxy term. Numerical experiments
suggest that my superior approach efficiently reduces the pricing error and alle-
viates the negative price problem for evaluating deep-out-of-the-money options.
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1 Introduction

Various stochastic processes, for example, the jump-diffusion model studied by Mer-

ton (1976) and the CGMY model studied by Carr et al. (2002), are proposed to

properly fit the empirical phenomena, says, like the high pick and heavy tail, of the

underlying asset’s price process. These complicated stochastic processes would make

the derivative pricing problems become intractable. Fortunately, the characteristic

functions for a vast class of stochastic processes used for modeling asset returns are

simple and the securities can be numerically evaluated by taking advantages of the

Fourier analysis (see e.g. Heston (1993), Bakshi and Madan (2000)). Carr and Madan

(1999) introduce the fast Fourier transform (FFT hereafter) into this class of pricing

approaches and their work is widely adopted during the past few years (see e.g. Carr

and Wu (2003), Lee (2004)).

Carr and Madan (1999) show that the option value can be expressed as the inverse

Fourier transform of the Fourier transform of the damped option price, which can be

expressed in terms of the characteristic function of the logarithm of the underlying

asset’s price and is the product of the option price and an exponential function. The

latter characteristic ensures that the Fourier transform of the damped option price is

well-defined, and can be numerically determined by the FFT. However, the integrand

of this quadrature is usually highly oscillatory and consequently great computational

cost is needed in order to get accurate pricing results. This paper improves the

option valuation method studied by Carr and Madan (1999), which is widely cited

and applied in academic literature, by significantly reducing the pricing error.

Assume that the price of an underlying asset of vanilla options follows a target

stochastic process G for convenience. To reduce the pricing error, the key idea of

the proposed approach is to split the Fourier transform of the damped option price

(used in Carr and Madan (1999)) into the proxy and residual parts. The proxy

part is chosen as the the Fourier transform of the damped option price implied by

another stochastic process G′ (called the“proxy process” hereafter) that satisfies the

following constraints: (i) analytical formulas for both the characteristic function of

G′ and the vanilla option values under G′ are admitted. (ii) The Fourier transform

of the damped option price under G is close to that under G′. Besides, the residual

part is defined as the difference of the two Fourier transforms mentioned above. The
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second constraint can be achieved by calibrating the cumulants of underlying asset’s

price of process G′ to match the cumulants of underlying asset’s price of G. With

this decomposition, the theoretical option value under G can be split into the proxy

term, the option value under G′, and the residual term, which is the difference of the

theoretical option value and the proxy term price. The proxy term can be obtained

with an analytic formula and consequently contributes to no numerical pricing error.

Only the residual term has to be numerically evaluated with the FFT and introduces

numerical error. Therefore, the total pricing error is significantly reduced. In this

thesis, the proxy term of the option value is chosen as the option price implied by the

jump-diffusion model studied by Merton (1976) since it can be expressed as a quickly

converging series of the option price implied by the diffusion model studied by Black

and Scholes (1973). Note that any other process that satisfies the first constraint

can be used as the proxy process without damaging our framework. Our numerical

experiments take the option pricing under the variance gamma model studied by

Madan et al. (1998), the stochastic volatility model studied by Heston (1993), and

the double exponential model studied by Kou (2002) as examples to demonstrate the

superiority of our approach.

Furthermore, the original FFT option valuation suggested by Carr and Madan

(1999) may generate inaccurate or even negative pricing results for deep-out-of-the-

money options unless they use extremely finer numerical integration(see e.g. Carr

and Madan (2009)). Our methodology also alleviates this problem.

The remainder of this paper is organized as follows. Section 2 reviews the FFT

option valuation approach studied by Carr and Madan (1999) and the jump-diffusion

model studied by Merton (1976). Section 3 introduces how our approach could reduce

the pricing error by decomposing the option value into the proxy and residual terms.

The way to calibrate the parameters of the proxy stochastic process G′ to suppress

the differences between the densities of the underlying asset’s return under G and G′

is also discussed in this section. Numerical results in section 4 verify the superiority

of our approach. Section 5 concludes.
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2 Preliminaries

2.1 Characteristic Function and Cumulants

Let X be a real-valued random variable, the characteristic function for X is defined

as

φX(u) = E
[
eiux
]

=

∫ ∞
−∞

eiux dFX(x),

where FX is the cumulative distribution function of X.

Moreover, if φX is k times differentiable, then the kth cumulant for X is defined

as

(−i)k(log φX)(k)(0).

Note that log φX is also named as the cumulant-generating function.

2.2 Fast Fourier Transform (FFT)

The FFT is an efficient algorithm to calculate discrete Fourier transform. It improves

the time complexity for calculating the following sum

w(k) =
N∑
j=1

e−i
2π
N

(j−1)(k−1)χ(j) for k = 1, 2, . . . , N, (1)

from O(N2) to O(N log2N), where N is usually a power of 2; χ is a real-valued

integrable function.

2.3 Composite Simpson’s Rule

The composite Simpson’s rule is a method of numerical integration. Let f be a real-

valued integrable function on interval [a, b] with continuous forth derivative and n be

an even number, there is a ξ ∈ [a, b] such that∫ b

a

f(x) dx =
h

3
[f(x0) + 2

n
2
−1∑
j=1

f(x2j) + 4

n
2∑
j=1

f(x2j−1) + f(xn)]− b− a
180

h4f (4)(ξ), (2)

where n denotes an even number, xj = a + jh for j = 0, 1, ..., n, and h = (b − a)/n.

Eq. (2) suggests that the definite integrals can be approximated by∫ b

a

f(x) dx =
h

3
[f(x0) + 2

n
2
−1∑
j=1

f(x2j) + 4

n
2∑
j=1

f(x2j−1) + f(xn)].
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with quadrature error bounded above by

b− a
180

h4 sup
y∈[a,b]

∣∣f (4)(y)
∣∣. (3)

2.4 Carr and Madan’s Option Pricing Method

Denote by CT (k) the price of a vanilla call option with maturity date T and strike

price K := ek. Let φT (v) and qT (s) denote the characteristic function and the risk-

neutral density of the logarithm of the underlying asset price at option maturity. Carr

and Madan (1999) suggest that

CT (k) :=

∫ ∞
k

(es − ek)qT (s) ds =
e−dk

π

∫ ∞
0

e−ivkψT (v) dv, (4)

where ψT (v) is the Fourier transform of the damped call price cT (k) ≡ edkCT (k) for

some damping constant d > 0, which can be further expressed in terms of φT (v) as

follows:

ψT (v) =

∫ ∞
−∞

eivkcT (k) dk =

∫ ∞
−∞

eivkedkCT (k) dk

=

∫ ∞
−∞

eivkedke−rT
∫ ∞
k

(es − ek)qT (s) ds dk

= e−rT
∫ ∞
−∞

qT (s)

[
ek(iv+d)+s

iv + d
− ek(iv+d+1)

iv + d+ 1

]k=s

k=−∞
ds

=
e−rT φT (v − (d+ 1)i)

d2 + d− v2 + i(2d+ 1)v
, (5)

where r denotes the risk-free interest rate. Since the Fourier transform of CT (k) does

not exist due to the fact that CT (k) converges to the current value of the underlying

asset as k → −∞, we have to choose a proper damping constant d > 0 to make

sure that edkCT (k) is integrable, and therefore the Fourier transform of cT (k) is well-

defined. In this work, we use d = 1.5 as the damping constant, as suggested by Carr

and Madan (1999).

If φT (v) (and hence ψT (v)) is known analytically, the call value given in Eq. (4)

can be approximated by the following sum

CT (k) ≈ e−dk

π

N∑
j=1

e−ivjkψT (vj)η, (6)
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where vj ≡ η(j − 1); η is the distance between quadrature points; N is the number

of quadrature points. Therefore, the effective upper limit for the integration, which

is defined as the truncation point of the integrand, is equal to Nη. In this work, we

choose Nη as 1024, as in Carr and Madan (1999). This integration can be efficiently

carried out by the FFT introduced in Sec. 2.1.

Carr and Madan (1999) use the FFT to simultaneously evaluate the values of N

otherwise identical options with different strike prices. The logarithms of these strike

prices can be defined as

ku ≡ k1 + Λ(u− 1) for u = 1, 2, 3, . . . ,m, (7)

where k1 and Λ are properly selected constants to make the interval [k1, km] contain

all strike prices of the option contracts in which we are interested. Substituting Eq.

(7) into Eq. (6) yields

CT (ku) ≈
e−dku

π

N∑
j=1

e−ivj(k1+Λ(u−1))ψT (vj)η

=
e−dku

π

N∑
j=1

e−iΛη(j−1)(u−1)e−ik1vjψT (vj)η. (8)

Note that both Λ and η should be properly selected to satisfy the constraint

Λη =
2π

N
. (9)

Thus, Eq. (8) can be expressed in terms of Eq. (1), and therefore can be efficiently

evaluated by the FFT.

2.5 Merton’s Jump-Diffusion Model

Our paper uses the jump-diffusion model studied by Merton (1976) to play the role

of the proxy process because the characteristic functions of both the logarithm of the

underlying asset’s price and the damped option value under the process are analyti-

cally known. Note that other suitable model can serve as the proxy process without

difficulty if analytical formulas for both the characteristic function of the logarithm

of the underlying asset’s price and the vanilla option values under it are admitted.

Now we give a brief review of Merton’s jump-diffusion model.

5



Under Merton’s jump-diffusion model, the asset price dynamics under some mea-

sure P are

dSt =

(
µ+

σ2

2

)
St dt+ σSt dWt + (eJt − 1)St dMt, (10)

where µ and σ2 are respectively the instantaneous mean and variance of the return

conditional on the Poisson event does not occur; Wt is a standard Brownian motion;

Mt is a Poisson process with intensity λ; Jt is an independent normally distributed

random variable with mean α and standard derivation β. By applying the Itô’s

formula, the differential form of the log price process can be expressed as

d lnSt =
1

St

[(
µ+

σ2

2

)
St dt+ σSt dWt

]
− 1

2S2
t

σ2S2
t dt+ ln

[
(eJt − 1)St + St

]
− lnSt

= µ dt+ σ dWt + Jt dMt. (11)

Denote by f the density of the logarithm of the underlying asset implied by Eq.

(11). According to the law of total probability, f can be expressed as

f(lnST ) =
∞∑
j=0

P(MT = j)f(lnST |MT = j)

=
∞∑
j=0

e−λT (λT )j

j!

1√
2π(σ2T + jβ2)

exp(−(lnST − (lnS0 + µT + jα))2

2(σ2T + jβ2)
).(12)

Moreover, Eq. (11) implies that

ln(
ST
S0

) = µT + σWT +

MT∑
k=0

Jk. (13)

Therefore, the terminal underlying asset’s price can be represented as

ST = S0 exp

(
µT + σWT +

MT∑
k=0

Jk

)
. (14)

Hence, the expected growth of the underlying asset under measure P will be

EP[ST ] = S0 EP[eµT ] EP[eσWT ] EP

[
e
∑MT
k=0 Jk

]
= S0 EP[eµT ] EP[eσWT ] EMT

EP

[
n∏
k=0

eJk |MT = n

]

= S0 EP[eµT ] EP[eσWT ] EMT

[
e(α+β2

2
)MT

]
= S0 e

µT e
σ2

2
T eλT (eα+

β2

2 −1)

= S0 exp

((
µ+

σ2

2
+ λ(eα+β2

2 − 1)

)
T

)
. (15)
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Eq. (15) implies that the discount rate under measure P must be

µ+
σ2

2
+ λ(eα+β2

2 − 1).

Besides, the characteristic function for the logarithm of ST implied by the above

stochastic differential equation in Eq. (11) is

φMJD
T (u) := EP(eiu lnST ) =

∫ ∞
−∞

eiu lnST f(lnST ) d lnST

=

∫ ∞
−∞

eiu lnST lim
n→∞

n∑
j=0

e−λT (λT )j

j!

exp
(
− (lnST−(lnS0+µT+jα))2

2(σ2T+jβ2)

)
√

2π(σ2T + jβ2)
d lnST (16)

= lim
n→∞

∫ ∞
−∞

eiu lnST

n∑
j=0

e−λT (λT )j

j!

exp
(
− (lnST−(lnS0+µT+jα))2

2(σ2T+jβ2)

)
√

2π(σ2T + jβ2)
d lnST

= lim
n→∞

n∑
j=0

e−λT (λT )j

j!

∫ ∞
−∞

eiu lnST
exp

(
− (lnST−(lnS0+µT+jα))2

2(σ2T+jβ2)

)
√

2π(σ2T + jβ2)
d lnST

= lim
n→∞

n∑
j=0

e−λT (λT )j

j!
exp

(
iu(lnS0 + µT + jα)− (σ2T + jβ2)u2

2

)
(17)

= exp

(
−λT + iu(µT + lnS0)− 1

2
σ2Tu2

)
lim
n→∞

n∑
j=0

(λT exp(iuα− β2u2

2
))j

j!
(18)

= exp

(
iu lnS0 +

(
iuµ− σ2u2

2
+ λ

(
eiαu−

β2u2

2 − 1

))
T

)
.

Eq. (17) holds since according to the monotone convergence theorem, we can inter-

change the integral operator with the limit operator in Eq. (16). Besides, the first

five cumulants for the logarithm of ST implied by Merton’s jump-diffusion model are

1stcumulant := (−i)(log φMJD
T )′(0) = lnS0 + (µ+ λα)T ;

2ndcumulant := (−i)2(log φMJD
T )′′(0) =

(
σ2 + λ

(
α2 + β2

))
T ;

3rdcumulant := (−i)3(log φMJD
T )′′′(0) = λ(α3 + 3αβ2)T ;

4thcumulant := (−i)4(log φMJD
T )(4)(0) = λ(α4 + 6α2β2 + 3β4)T ;

5thcumulant := (−i)5(log φMJD
T )(5)(0) = λ(α5 + 10α3β2 + 15αβ4)T.

Moreover, the vanilla call price implied by Merton’s jump-diffusion model with
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strike price K := ek and maturity T is equal to

CMJD
T (k) = e−(µ+

σ2

2 +λ(eα+
β2

2 −1))T
∫ ∞
k

(elnST − ek)f(lnST ) d lnST

= e−(µ+
σ2

2 +λ(eα+
β2

2 −1))T
∫ ∞
k

(elnST − ek) lim
n→∞

n∑
j=0

e−λT (λT )j

j!

exp(− (lnST−(lnS0+µT+jα))2

2(σ2T+jβ2) )√
2π(σ2T + jβ2)

d lnST

= e−(µ+
σ2

2 +λ(eα+
β2

2 −1))T lim
n→∞

n∑
j=0

e−λT (λT )j

j!

∫ ∞
k

(elnST − ek)
exp(− (lnST−(lnS0+µT+jα))2

2(σ2T+jβ2) )√
2π(σ2T + jβ2)

d lnST (19)

Again, Eq. (19) holds because we use the monotone convergence theorem to inter-

change the limit and integral operators. Now we set

Q :=
lnST − (lnS0 + µT + jα)√

σ2T + jβ2

and

k′ :=
k − (lnS0 + µT + jα)√

σ2T + jβ2
.

According to the change of variable theorem, Eq. (19) can be rewritten as

CMJD
T (k) = e−(µ+

σ2

2 +λ(eα+
β2

2 −1))T
∞∑
j=0

e−λT (λT )j

j!

∫ ∞
k′

(S0 e
µT+jα+Q

√
σ2T+jβ2 − ek)

e−
Q2

2

√
2π

dQ

=

∞∑
j=0

e−λe
α+

β2

2 T
(
λeα+

β2

2 T
)j

j!

S0

∫ ∞
k′

e−
(Q−
√
σ2T+jβ2)2

2

√
2π

dQ− eke−(µ+σ2

2 )T−j(α+ β2

2 )

∫ ∞
k′

e−
Q2

2

√
2π

dQ


=

∞∑
j=0

e−λ
′T (λ′T )j

j!
CBS
T (S0, k, σj , rj), (20)

where λ′ := λeα+β2

2 ; CBS
T (S0, k, σj, rj) denotes the Black-Scholes call option pricing

formula with underlying asset’s price S0, strike price K := ek, time to maturity T ,

risk-free rate

rj := µ+
σ2

2
+
j(α + β2

2
)

T
,

and volatility rate

σj :=

√
σ2 +

jβ2

T
.

2.6 Variance Gamma Model

The variance gamma model (VG model hereafter) studied by Madan et al. (1998) is

a generalized Brownian motion. It can be obtained by evaluating Brownian motion

with drift at a random time change given by gamma process.
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A gamma process is a random process with independent gamma distributed in-

crements. Let γt(δ, ν) be a gamma process with mean rate δ and variance rate ν. The

increment γt+h(δ, ν)− γt(δ, ν) follows gamma distribution with mean δh and variance

νh.

Let Wt be a standard Brownian motion and bt(ϑ, ς) := ϑt + ςWt be a Brownian

motion with drift rate ϑ and variance rate ς. The VG process can be defined as

Xt(ς, ν, ϑ) := bγt(1,ν)(ϑ, ς),

where γt(1, ν) is a gamma process with mean rate 1 and variance rate ν. Moreover,

the characteristic function of the the VG process is

φXT (u) := E[eiuXT (ς,ν,ϑ)] =

(
1− iϑνu+

ς2νu2

2

)−T
ν

.

Let r be the risk-free interest rate. If we model the asset dynamics by

ST = S0 exp(rT +XT (ς, ν, ϑ) + ωT ) (21)

and set ω as − lnφXT (−i)/T , we get the asset price process under the risk-neutral

measure. Furthermore, the characteristic function of the logarithm of the asset price

implied by the risk-neutralized dynamics in Eq. (21) is

φVG
T (u) := E[eiu lnST ] = exp(iu lnS0) exp(iu(rT − lnφXT (−i)))φXT (u)

= exp(iu(lnS0 + (r + (1/ν) ln(1− ϑν − ς2ν/2)T ))

(
1− iϑνu+

ς2νu2

2

)−T
ν

.

2.7 Heston’s Stochastic Volatility Model

The model studied by Heston (1993) generalizes the Black-Scholes model to a stochas-

tic volatility version. Heston (1993) assumes that the asset dynamics follows

dSt = ζSt dt+
√
vtSt dWt,

where ζ and vtis the instantaneous mean and variance of the return; Wt is a standard

Brownian motion. The instantaneous volatility vt follows

dvt = κ(θ − vt) dt+ ε
√
vt dBt, (22)
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where Bt is a standard Brownian motion which has correlation ρ with Wt; κ deter-

mines the mean reversion speed; θ is the long-run variance and ε is the volatility of

volatility parameter. Note that Eq. (22) is the famous C-I-R square-root process

studied by Cox et al. (1985).

The risk-neutralized characteristic function of the logarithm of the asset price

implied by the Heston model is

φHeston
T (u) := E[eiu lnST ] = exp(iu(lnS0 + rT ) + C(u) +D(u)V0),

where V0 is the current variance;

d(u) :=
√

(ρεui− κ)2 + ε2(ui+ u2);

g(u) :=
κ− ρεui+ d(u)

κ− ρεui− d(u)
;

C(u) :=
κθ

ε2

[
(κ− ρεui+ d(u))T − 2 log

(
1− g(u)ed(u)T

1− g(u)

)]
;

D(u) :=
κ− ρεui+ d(u)

ε2
(

1− ed(u)T

1− g(u)ed(u)T
).

2.8 Kou’s Jump-Diffusion Model

Kou (2002) assumes that the underlying asset price dynamics follows

dSt =

(
µ̃+

σ̃2

2

)
St dt+ σ̃St dWt + (eZt − 1)St dMt,

where µ̃ and σ̃2 are respectively the instantaneous mean and variance of the return

conditional on the Poisson event does not occur; Wt is a standard Brownian motion;

Mt is a Poisson process with intensity λ̃; Zt is an independent double exponential

(DE hereafter) random variable with the density

fZ(z) = p · ω1e
−ω1z1{z≥0} + q · ω2e

−ω2z1{z≤0},

where ω1 > 0 and ω2 > 0 represents the rate of two independent exponential random

variable respectively; p, q ≥ 0 represent the probabilities of upward and downward

jumps respectively, subject to p+ q = 1.
The risk-neutralized characteristic function of the logarithm of the asset price

implied by Kou’s model is

φDE
T (u) := E[eiu lnST ]

= exp

(
iu lnS0 +

(
iu

(
r − λ̃

(
q ω2

ω2 + 1
+

pω1

ω1 − 1
− 1

)
− σ̃2

2

)
− σ̃2u2

2
+ λ̃

(
q ω2

ω2 + iu
+

pω1

ω1 − iu
− 1

))
T

)
.
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3 Error Reduction with a Proxy

3.1 Decomposition of Call Price

With a suitable function ψproxy
T (v) which closely approximates ψT (v), the theoretical

call value in Eq. (4) can be further decomposed into a proxy part and a residual part

as follows

CT (k) =
e−dk

π

∫ ∞
0

e−ivkψT (v) dv

=
e−dk

π

∫ ∞
0

e−ivk[ψproxy
T (v) + ψresidual

T (v)] dv

=
e−dk

π

∫ ∞
0

e−ivkψproxy
T (v) dv +

e−dk

π

∫ ∞
0

e−ivkψresidual
T (v) dv

= Cproxy
T (k) + Cresidual

T (k). (23)

There are two critical criteria for choosing a sound ψproxy
T (v). First, analytical

formulas for both ψproxy
T (v) and Cproxy

T (k) are admitted. Without an analytical formula

of ψproxy
T (v), it will be very difficult to numerically determine the Fourier inversion of

ψresidual
T (v) because we don’t even have an analytic formula of ψresidual

T (v). If Cproxy
T (k)

can be calculated with an explicit formula, we can obtain it without performing a

numerical integration. Accordingly, the proxy term contributes to zero numerical

pricing error; only the residual term, which is the difference of the theoretical option

value and the proxy term price, has to be numerically evaluated with the FFT in

the inversion stage. Second, we choose a proxy term of the Fourier transform of the

damped option value, ψproxy
T (v), that is closed to ψT (v) so that the value of ψresidual

T (v)

is quite small. As a result, the value of the 4th order derivative of ψresidual
T (v) will have

a better chance to be small. According to Eq. (3), the quadrature error is bounded

above by the supremum of the 4th derivative of the integrand. Therefore, our method

will have a better chance to generate less quadrature error than the original Carr and

Madan’s method since the upper bound of quadrature error has been significantly

improved.

3.2 Use Merton’s Jump-Diffusion Model as a Proxy

We will use Merton’s jump-diffusion model to play the role of proxy. According to Eq.

(18), the characteristic function of the logarithm of the call price can be expressed as
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an infinite series

φMJD
T (u) = exp

(
−λT + iu(µT + lnS0)− 1

2
σ2Tu2

) ∞∑
j=0

(λT exp(iuα− β2u2

2
))j

j!
.

Let H be a positive integer. Now the characteristic function above can be split into

two parts:

φMJD, 1
T (u) := exp

(
−λT + iu(µT + lnS0)− 1

2
σ2Tu2

)H−1∑
j=0

(λT exp(iuα− β2u2

2
))j

j!
,

φMJD, 2
T (u) := exp

(
−λT + iu(µT + lnS0)− 1

2
σ2Tu2

) ∞∑
j=H

(λT exp(iuα− β2u2

2
))j

j!
.

Hence, ψMJD
T (v) can also be split into two parts:

ψMJD, 1
T (v) :=

e−(µ+σ2

2
+λ(eα+

β2

2 −1))T φMJD, 1
T (v − (d+ 1)i)

d2 + d− v2 + i(2d+ 1)v
,

ψMJD, 2
T (v) :=

e−(µ+σ2

2
+λ(eα+

β2

2 −1))T φMJD, 2
T (v − (d+ 1)i)

d2 + d− v2 + i(2d+ 1)v
.

Therefore, the target call price can be divided into

CT (k) =
e−dk

π

∫ ∞
0

e−ivkψT (v) dv

=
e−dk

π

∫ ∞
0

e−ivk[ψMJD
T (v) + ψRESIDUAL

T (v)] dv

=
e−dk

π

∫ ∞
0

e−ivk
[
ψMJD,1
T (v) + ψMJD, 2

T (v)
]
dv +

e−dk

π

∫ ∞
0

e−ivkψRESIDUAL
T (v) dv

=
e−dk

π

∫ ∞
0

e−ivkψMJD, 1
T (v) dv +

e−dk

π

∫ ∞
0

e−ivk
[
ψMJD, 2
T (v) + ψRESIDUAL

T (v)
]
dv

:= Cproxy
T (k) + Cresidual

T (k),

where ψRESIDUAL
T (v) is defined as the difference of ψT (v) and ψMJD

T (v). We use the

first H terms of Merton’s characteristic function to be the proxy instead of using

the complete ψMJD
T (v) since we want to avoid invoking infinitely many Black-Scholes

formulas.

Therefore, the proxy characteristic function equals

φproxy
T (u) = exp

(
−λT + iu(µT + lnS0)− 1

2
σ2Tu2

)H−1∑
j=0

(λT exp(iuα− β2u2

2
))j

j!
,

12



and therefore the proxy term of the Fourier transform of the damped option value

will be

ψproxy
T (v) =

e−(µ+σ2

2
+λ(eα+

β2

2 −1))T φproxy
T (v − (d+ 1)i)

d2 + d− v2 + i(2d+ 1)v
.

Moreover, the proxy term of the theoretical call price is equal to

Cproxy
T (k) =

H−1∑
j=0

e−λ
′T (λ′T )j

j!
CBS
T (S0, k, σj, rj).

Now we want to demonstrate how to calibrate corresponding parameters for the

proxy characteristic function. Suppose that there is a target distribution with an-

alytic characteristic function of the logarithm of the underlying asset’s price. Since

the characteristic functions (for a vast class) admit infinite differentiability (see e.g.

Bakshi and Madan (2000)), we can use the method described in Sec. 2.1 to obtain

the first five cumulants of the logarithm of the underlying asset’s price implied by

the target model. Note that we use the first five cumulants to find the corresponding

parameters for Merton’s model since there are only five parameters, say, five degrees

of freedom, in Merton’s model. Assume the first five cumulants of the logarithm of

the underlying asset’s price implied by the target process are known and equal to

m1 + lnS0, m2, m3, m4, and m5, respectively. The key idea is that we match the first

five cumulants for the logarithm of the underlying asset’s price implied by the target

distribution with the first five cumulants for the logarithm of the underlying asset’s

price implied by Merton’s jump-diffusion model to suppress the differences between

the proxy and target characteristic functions. This yields

(µ+ λα)T = m1, (24)(
σ2 + λ

(
α2 + β2

))
T = m2, (25)

λ(α3 + 3αβ2)T = m3, (26)

λ(α4 + 6α2β2 + 3β4)T = m4, (27)

λ(α5 + 10α3β2 + 15αβ4)T = m5. (28)

Since the time to maturity is a known constant and the first five moments are multiples

of T , we set T = 1 W.L.O.G. for notation simplicity. Note that if T 6= 1, we can

exchange mi with mi/T for i = 1, 2, · · · , 5 in the following derivation.

13



We first rewrite Eq. (26) as

β2 =
m3 − λα3

3λα
(29)

and then replace all the β2 in Eq. (27) and Eq. (28) by Eq. (29). This yields

−2α6λ2 + (4m3α
3 − 3α2m4)λ+m2

3 = 0,

−2α6λ2 − 3αm5λ+ 5m2
3 = 0.

By equating the above two equations, we get

λ =
4m2

3

3m5α− 3m4α2 + 4m3α3
. (30)

Now we can replace the λ and β2 in Eq. (26) by Eq. (29) and Eq. (30), respec-

tively, and get a polynomial equation of α as follows

48α4m4
3 − 120α3m3

3m4 + 9α2m2
3

(
8m3m5 + 5m2

4

)
− 54αm2

3m4m5 + 9m2
3m

2
5 = 0. (31)

Clearly, the variable α in Eq. (31) can be easily solved since the left hand side

of Eq. (31) is a polynomial function of α with degree 4. If there are two or more

roots among the real numbers, we pick the one which implies smaller λ because we

want the proxy option value plays a major role in the overall call price. Note that we

invoke the first H terms of the call price implied by Merton’s model as the the proxy

part call price. Therefore, we choose the answer with smaller λ since in this case, the

probability mass of the Poisson distribution will be more concentrated on the first H

terms. However, it is possible that Eq. (31) does not have any roots among the real

numbers. In this case, we simply pick a proper α to minimizes the absolute value of

the left hand side of Eq. (31). Once α is determined, the other 4 parameters, λ, µ,

β, and σ, can also be determined easily.

Figure 3.2 provides an inspirational example for our method by the VG model.

The solid line represents the probability density of the logarithm of terminal un-

derlying asset’s price implied by the VG process with ς = 0.1213, ν = 0.1686,

ϑ = −0.1436. The dashed line represents the probability density of the logarithm

of terminal underlying asset’s price implied by Merton’s jump-diffusion model with

parameters µ = 0.0391, σ = 0.1034, λ = 0.3283, α = −0.1461 and β = 0.0384, which

14



are solved by the method provided in this section. Figure 3.2 illustrates the fact that

the calibration method provided in this section can generate a proxy density which

is closed to the target density.

Figure 3.2 demonstrate the error-reducing effect for our algorithm to price a vanilla

call option whose underlying asset follows the VG process. We plot the real part of

the integrand of the Fourier inversion, e−ivkψT (v), as well as its forth derivative,

d4

dv4
(e−ivkψT (v)), because for one thing, we use the composite Simpson’s rule, as sug-

gested in Carr and Madan (1999), for quadrature. As a result, the numerical error

committed is bounded by a constant multiple of the maximum absolute value of the

fourth derivative of the integrand, as shown in Eq. (3). For another, the price of a

call option should be a real number, and therefore we focus on the real part of the

integrand.

The real part of the integrands of the Fourier inversion in the original Carr and

Madan’s method and our method with H = 7, e−ivkψT (v) and e−ivk[ψMJD,2
T (v) +

ψRESIDUALT (v)], are shown in panel (a) and (b), respectively. These two integrands

are plotted in panel (c) with part of the magnitude larger than 20 being trun-

cated. The real part of the fourth derivative of the integrands of the Fourier in-

version in the original Carr and Madan’s method and our method, d4

dv4
(e−ivkψT (v))

and d4

dv4

(
e−ivk[ψMJD,2

T (v) + ψRESIDUALT (v)]
)

, are shown in panel (d) and (e), respec-

tively. These two integrands are plotted in panel (f) with part of the magnitude larger

than 200,000 being truncated. All panels are based on the VG model with setting

S0 = 100, K = 100, r = 0, T = 4 months, ς = 0.1213, ν = 0.1686, and ϑ = −0.1436.

The key point is that the amplitudes of the 4th derivative of the integrand for our

method are significantly smaller than the amplitudes of the 4th derivative of the

integrand for the original Carr and Madan’s method. Since the numerical error com-

mitted by numerical integration with the Composite Simpson’s rule is bounded above

by the supremum of the 4th derivative, our method considerably improves the upper

bound of quadrature error.

4 Numerical Results

We take the VG model, the Heston model, and Kou’s jump-diffusion model for nu-

merical examples. The parameter values used for the VG model are S0 = 100, K =

15



Figure 1: Comparison of the target and proxy densities.

The solid line represents the probability density implied by the VG process with parameters ς =

0.1213, ν = 0.1686, and ϑ = −0.1436. The dashed line represents the probability density implied by

Merton’s jump-diffusion model with parameters µ = 0.0391, σ = 0.1034, λ = 0.3283, α = −0.1461

and β = 0.0384, which are solved by the method provided in this section. This figure illustrates

the fact that the calibration method provided in this section can generate a proxy density which is

closed to the target density.

100, r = 0, T = 4 months, ς = 0.1213, ν = 0.1686, and ϑ = −0.1436. The parameter

values used for the Heston model are S0 = 100, K = 100, r = 0, T = 4 months, κ =

1.49, θ = 0.0671, ε = 0.742, ρ = −0.571, and V0 = 0.0262. The parameter values used

for Kou’s jump-diffusion model are S0 = 100, K = 98, r = 0.05, T = 6 months, ω1 =

10, ω2 = 5, λ̃ = 1, p = 0.4, q = 0.6, and σ̃ = 0.16. The convergence rate for both

models are shown in Figure 4.

Panel (b), (d), and (f) show that our algorithm does significantly improve the pric-

ing accuracy since the number of grids needed to achieve a specific pricing accuracy

for our method is much less than the original Carr and Madan’s method. However,

our method takes additional computational time since we need to find corresponding

parameters for Merton’s model as well as invoke H Black-Scholes formulas besides

the original Carr and Madan’s algorithm. Therefore, we have to demonstrate the two

time-error plots, panel (a), (c), and (e), to analyze the convergence speed and com-

putational time. Given the same computational time constraint, the pricing accuracy

for our method is significantly better than the original Carr and Madan’s method in

both cases. Note that different H means different kinds of proxies are used. When a
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Comparison of the integrand in the Fourier inversion.

This figure demonstrates the error-reducing effect of our algorithm. The real part of the inte-

grands of the Fourier inversion in the original Carr and Madan’s method and our method with

H = 7, e−ivkψT (v) and e−ivk[ψMJD,2
T (v) + ψRESIDUALT (v)], are shown in panel (a) and (b), re-

spectively. These two integrands are plotted in panel (c) with part of the magnitude larger than

20 being truncated. The real part of the fourth derivative of the integrands of the Fourier inver-

sion in the original Carr and Madan’s method and our method with H = 7, d4

dv4 (e−ivkψT (v)) and
d4

dv4

(
e−ivk[ψMJD,2

T (v) + ψRESIDUALT (v)]
)

, are shown in panel (d) and (e), respectively. These two

integrands are plotted in panel (f) with part of the magnitude larger than 200,000 being truncated.

All panels are based on the VG model with setting S0 = 100, K = 100, r = 0, T = 4 months, ς =

0.1213, ν = 0.1686, and ϑ = −0.1436. The key point is that the amplitudes of the 4th derivative of

the integrand for our method are significantly smaller than the amplitudes of the 4th derivative of

the integrand for the original Carr and Madan’s method. Since the numerical error committed by

numerical integration with the Composite Simpson’s rule is bounded above by the supremum of the

4th derivative, our method considerably improves the upper bound of quadrature error.
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Figure 3: Convergence of pricing results.

The pricing errors are computed from, in panel (a) and (b), the VG model with S0 = 100, K =

100, r = 0, T = 4 months, ς = 0.1213, ν = 0.1686, ϑ = −0.1436 and, in panel (c) and (d), the

Heston model with S0 = 100, K = 100, r = 0, T = 4 months, κ = 1.49, θ = 0.0671, ε = 0.742, ρ =

−0.571, V0 = 0.0262 and, in panel (e) and (f), Kou’s jump-diffusion model with S0 = 100, K =

98, r = 0.05, T = 6 months, ω1 = 10, ω2 = 5, λ̃ = 1, p = 0.4, q = 0.6, σ̃ = 0.16. In both panel (a),

(c), and (e), lines are computational time plotted against the logarithm of the absolute pricing error.

In both panel (b), (d), and (f), lines are log(η) plotted against the logarithm of the absolute pricing

error. The squares denote the pricing results for the original Carr and Madan’s method; the stars,

triangles, and circles denote the pricing results for our method with H = 1, 3, and 7, respectively.

The damping coefficient and the effective upper limit for integration are set to be 1.5 and 1024,

respectively, as in Carr and Madan (1999). The pricing results implied by the original Carr and

Madan’s method with N = 220 quadrature points are used as the benchmarks.
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Figure 4: Comparison of negative pricing results with and without the
proxy.

This figure demonstrates the negative pricing results for a deep out-of-the-money option. The x-axis

denotes the computational time and the y-axis denotes product of sign function value of the call

price and 15 plus the absolute pricing error. The squares and triangles denote the pricing results

for the original Carr and Madan’s method and our method with H = 7, respectively. We use

“sign(Call Price) log(|Error|+ 15)” as the unit of the y-axis because we want to make sure that the

pricing result will be plotted above the x-axis when the corresponding call price is positive. The

original Carr and Madan’s method should use η = 0.125 in order to get positive pricing results;

however, in our novel method, we can get positive pricing results with η = 0.25. The parameter

values used for the Heston model are S0 = 100, K = 200, r = 0.03, T = 6 months, κ = 2, θ =

0.04, ε = 0.5, ρ = −0.7, and V0 = 0.04. The damping coefficient and the effective upper limit for

integration are set to be 1.5 and 1024, respectively. The pricing results implied by the original Carr

and Madan’s method with 220 quadrature points are used as the benchmarks.

better proxy is chosen, the pricing accuracy will be better.

Furthermore, the original Carr and Madan’s method often returns negative prices

for deep out-of-the-money options (see e.g. Carr and Madan (2009) ) because the

integrand of the Fourier inversion for deep out-of-the-money options is highly oscil-

latory, and therefore deteriorates the convergence rate of quadrature. Our method

can also alleviate this problem. We demonstrate this alleviation effect by the Heston

model with S0 = 100, K = 200, r = 0.03, T = 6 months, κ = 2, θ = 0.04, ε =

0.5, ρ = −0.7, and V0 = 0.04, which are the same as the parameters used in Carr

and Madan (2009). Figure 4 shows that the pricing result for our method con-

verges to positive prices faster than the original Carr and Madan’s method. We use

“sign(Call Price) log(|Error|+ 15)” as the unit of the y-axis because we want to make

sure that the pricing result will be plotted above the x-axis when the corresponding

call price is positive Thus, we conclude that our method does alleviate the negative

pricing result.
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5 Conclusions

This paper provides a novel error-reducing method for the option valuation method

studied by Carr and Madan (1999). Under the same computational time constraint,

our method improves the pricing accuracy significantly. It is because the forth deriva-

tive of the integrand in the Fourier inversion has smaller amplitude for our method,

and therefore the upper bound of numerical error is improved. Although we illustrate

the benefits of our methodology by vanilla option only, our method can be extended

to other kinds of financial derivatives with a suitable proxy. For example, the three

kinds of payoffs suggested in Lee (2004). We also anticipate that the idea in our paper

can be further extended to other kinds of numerical methods.
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